
9 Linear Discriminant Analysis

9.1 Introduction

In this chapter, we consider classification models of the following form:

p(y = c|x,θ) = p(x|y = c,θ)p(y = c|θ)∑
c′ p(x|y = c′,θ)p(y = c′|θ) (9.1)

The term p(y = c|θ) is the prior over class labels, and the term p(x|y = c,θ) is called the class
conditional density for class c.

The overall model is called a generative classifier, since it specifies a way to generate the
features x for each class c, by sampling from p(x|y = c,θ). By contrast, a discriminative classifier
directly models the class posterior p(y|x,θ). We discuss the pros and cons of these two approaches
to classification in Section 9.4.

If we choose the class conditional densities in a special way, we will see that the resulting posterior
over classes is a linear function of x, i.e., log p(y = c|x,θ) = wTx+ const, where w is derived from
θ. Thus the overall method is called linear discriminant analysis or LDA.1

9.2 Gaussian discriminant analysis

In this section, we consider a generative classifier where the class conditional densities are multivariate
Gaussians:

p(x|y = c,θ) = N (x|µc,Σc) (9.2)

The corresponding class posterior therefore has the form

p(y = c|x,θ) ∝ πcN (x|µc,Σc) (9.3)

where πc = p(y = c|θ) is the prior probability of label c. (Note that we can ignore the normalization
constant in the denominator of the posterior, since it is independent of c.) We call this model
Gaussian discriminant analysis or GDA.

1. This term is rather confusing for two reasons. First, LDA is a generative, not discriminative, classifier. Second,
LDA also stands for “latent Dirichlet allocation”, which is a popular unsupervised generative model for bags of words
[BNJ03].
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Figure 9.1: (a) Some 2d data from 3 different classes. (b) Fitting 2d Gaussians to each class. Generated by
discrim_analysis_dboundaries_plot2.ipynb.
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Figure 9.2: Gaussian discriminant analysis fit to data in Figure 9.1. (a) Unconstrained covariances induce
quadratic decision boundaries. (b) Tied covariances induce linear decision boundaries. Generated by dis-
crim_analysis_dboundaries_plot2.ipynb.

9.2.1 Quadratic decision boundaries

From Equation (9.3), we see that the log posterior over class labels is given by

log p(y = c|x,θ) = log πc −
1

2
log |2πΣc| −

1

2
(x− µc)

TΣ−1c (x− µc) + const (9.4)

This is called the discriminant function. We see that the decision boundary between any two classes,
say c and c′, will be a quadratic function of x. Hence this is known as quadratic discriminant
analysis (QDA).

For example, consider the 2d data from 3 different classes in Figure 9.1a. We fit full covariance
Gaussian class-conditionals (using the method explained in Section 9.2.4), and plot the results in
Figure 9.1b. We see that the features for the blue class are somewhat correlated, whereas the features
for the green class are independent, and the features for the red class are independent and isotropic
(spherical covariance). In Figure 9.2a, we see that the resulting decision boundaries are quadratic
functions of x.
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Figure 9.3: Geometry of LDA in the 2 class case where Σ1 = Σ2 = I.

9.2.2 Linear decision boundaries

Now we consider a special case of Gaussian discriminant analysis in which the covariance matrices are
tied or shared across classes, so Σc = Σ. If Σ is independent of c, we can simplify Equation (9.4)
as follows:

log p(y = c|x,θ) = log πc −
1

2
(x− µc)

TΣ−1(x− µc) + const (9.5)

= log πc −
1

2
µT

cΣ
−1µc

︸ ︷︷ ︸
γc

+xT Σ−1µc︸ ︷︷ ︸
βc

+const− 1

2
xTΣ−1x

︸ ︷︷ ︸
κ

(9.6)

= γc + x
Tβc + κ (9.7)

The final term is independent of c, and hence is an irrelevant additive constant that can be dropped.
Hence we see that the discriminant function is a linear function of x, so the decision boundaries will
be linear. Hence this method is called linear discriminant analysis or LDA. See Figure 9.2b for
an example.

9.2.3 The connection between LDA and logistic regression

In this section, we derive an interesting connection between LDA and logistic regression, which we
introduced in Section 2.5.3. From Equation (9.7) we can write

p(y = c|x,θ) = eβ
T
cx+γc

∑
c′ e

βT
c′x+γc′

=
ew

T
c[1,x]

∑
c′ e

wT
c′ [1,x]

(9.8)

where wc = [γc,βc]. We see that Equation (9.8) has the same form as the multinomial logistic
regression model. The key difference is that in LDA, we first fit the Gaussians (and class prior) to
maximize the joint likelihood p(x, y|θ), as discussed in Section 9.2.4, and then we derive w from θ.
By contrast, in logistic regression, we estimate w directly to maximize the conditional likelihood
p(y|x,w). In general, these can give different results (see Exercise 10.3).

To gain further insight into Equation (9.8), let us consider the binary case. In this case, the
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posterior is given by

p(y = 1|x,θ) = eβ
T
1x+γ1

eβ
T
1x+γ1 + eβ

T
0x+γ0

=
1

1 + e(β0−β1)
Tx+(γ0−γ1)

(9.9)

= σ
(
(β1 − β0)

Tx+ (γ1 − γ0)
)

(9.10)

where σ(η) refers to the sigmoid function.
Now

γ1 − γ0 = −1

2
µT

1Σ
−1µ1 +

1

2
µT

0Σ
−1µ0 + log(π1/π0) (9.11)

= −1

2
(µ1 − µ0)

TΣ−1(µ1 + µ0) + log(π1/π0) (9.12)

So if we define

w = β1 − β0 = Σ−1(µ1 − µ0) (9.13)

x0 =
1

2
(µ1 + µ0)− (µ1 − µ0)

log(π1/π0)

(µ1 − µ0)
TΣ−1(µ1 − µ0)

(9.14)

then we have wTx0 = −(γ1 − γ0), and hence

p(y = 1|x,θ) = σ(wT(x− x0)) (9.15)

This has the same form as binary logistic regression. Hence the MAP decision rule is

ŷ(x) = 1 iff wTx > c (9.16)

where c = wTx0. If π0 = π1 = 0.5, then the threshold simplifies to c = 1
2w

T(µ1 + µ0).
To interpret this equation geometrically, suppose Σ = σ2I. In this case, w = σ−2(µ1 − µ0),

which is parallel to a line joining the two centroids, µ0 and µ1. So we can classify a point by
projecting it onto this line, and then checking if the projection is closer to µ0 or µ1, as illustrated in
Figure 9.3. The question of how close it has to be depends on the prior over classes. If π1 = π0, then
x0 = 1

2 (µ1 + µ0), which is halfway between the means. If we make π1 > π0, we have to be closer to
µ0 than halfway in order to pick class 0. And vice versa if π0 > π1. Thus we see that the class prior
just changes the decision threshold, but not the overall shape of the decision boundary. (A similar
argument applies in the multi-class case.)

9.2.4 Model fitting

We now discuss how to fit a GDA model using maximum likelihood estimation. The likelihood
function is as follows

p(D|θ) =
N∏

n=1

Cat(yn|π)
C∏

c=1

N (xn|µc,Σc)
I(yn=c) (9.17)
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Hence the log-likelihood is given by

log p(D|θ) =
[

N∑

n=1

C∑

c=1

I (yn = c) log πc

]
+

C∑

c=1

[ ∑

n:yn=c

logN (xn|µc,Σc)

]
(9.18)

Thus we see that we can optimize π and the (µc,Σc) terms separately.
From Section 4.2.4, we have that the MLE for the class prior is π̂c = Nc

N . Using the results from
Section 4.2.6, we can derive the MLEs for the Gaussians as follows:

µ̂c =
1

Nc

∑

n:yn=c

xn (9.19)

Σ̂c =
1

Nc

∑

n:yn=c

(xn − µ̂c)(xn − µ̂c)
T (9.20)

Unfortunately the MLE for Σ̂c can easily overfit (i.e., the estimate may not be well-conditioned) if
Nc is small compared to D, the dimensionality of the input features. We discuss some solutions to
this below.

9.2.4.1 Tied covariances

If we force Σc = Σ to be tied, we will get linear decision boundaries, as we have seen. This also
usually results in a more reliable parameter estimate, since we can pool all the samples across classes:

Σ̂ =
1

N

C∑

c=1

∑

n:yn=c

(xn − µ̂c)(xn − µ̂c)
T (9.21)

9.2.4.2 Diagonal covariances

If we force Σc to be diagonal, we reduce the number of parameters from O(CD2) to O(CD), which
avoids the overfitting problem. However, this loses the ability to capture correlations between the
features. (This is known as the naive Bayes assumption, which we discuss further in Section 9.3.)
Despite this approximation, this approach scales well to high dimensions.

We can further restrict the model capacity by using a shared (tied) diagonal covariace matrix.
This is called “diagonal LDA” [BL04].

9.2.4.3 MAP estimation

Forcing the covariance matrix to be diagonal is a rather strong assumption. An alternative approach
is to perform MAP estimation of a (shared) full covariance Gaussian, rather than using the MLE.
Based on the results of Section 4.5.2, we find that the MAP estimate is

Σ̂map = λdiag(Σ̂mle) + (1− λ)Σ̂mle (9.22)

where λ controls the amount of regularization. This technique is known as regularized discriminant
analysis or RDA [HTF09, p656].
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328 Chapter 9. Linear Discriminant Analysis

9.2.5 Nearest centroid classifier

If we assume a uniform prior over classes, we can compute the most probable class label as follows:

ŷ(x) = argmax
c

log p(y = c|x,θ) = argmin
c

(x− µc)
TΣ−1(x− µc) (9.23)

This is called the nearest centroid classifier, or nearest class mean classifier (NCM), since
we are assigning x to the class with the closest µc, where distance is measured using (squared)
Mahalanobis distance.

We can replace this with any other distance metric to get the decision rule

ŷ(x) = argmin
c

d2(x,µc) (9.24)

We discuss how to learn distance metrics in Section 16.2, but one simple approach is to use

d2(x,µc) = ||x− µc||2W = (x− µc)
T(WWT)(x− µc) = ||W(x− µc)||2 (9.25)

The corresponding class posterior becomes

p(y = c|x,µ,W) =
exp(− 1

2 ||W(x− µc)||22)∑C
c′=1 exp(− 1

2 ||W(x− µc′)||22)
(9.26)

We can optimize W using gradient descent applied to the discriminative loss. This is called nearest
class mean metric learning [Men+12]. The advantage of this technique is that it can be used for
one-shot learning of new classes, since we just need to see a single labeled prototype µc per class
(assuming we have learned a good W already).

9.2.6 Fisher’s linear discriminant analysis *

Discriminant analysis is a generative approach to classification, which requires fitting an MVN to
the features. As we have discussed, this can be problematic in high dimensions. An alternative
approach is to reduce the dimensionality of the features x ∈ RD and then fit an MVN to the
resulting low-dimensional features z ∈ RK . The simplest approach is to use a linear projection
matrix, z = Wx, where W is a K×D matrix. One approach to finding W would be to use principal
components analysis or PCA (Section 20.1). However, PCA is an unsupervised technique that does
not take class labels into account. Thus the resulting low dimensional features are not necessarily
optimal for classification, as illustrated in Figure 9.4.

An alternative approach is to use gradient based methods to optimize the log likelihood, derived
from the class posterior in the low dimensional space, as we discussed in Section 9.2.5.

A third approach (which relies on an eigendecomposition, rather than a gradient-based optimizer)
is to find the matrix W such that the low-dimensional data can be classified as well as possible using
a Gaussian class-conditional density model. The assumption of Gaussianity is reasonable since we
are computing linear combinations of (potentially non-Gaussian) features. This approach is called
Fisher’s linear discriminant analysis, or FLDA.

FLDA is an interesting hybrid of discriminative and generative techniques. The drawback of this
technique is that it is restricted to using K ≤ C − 1 dimensions, regardless of D, for reasons that we
will explain below. In the two-class case, this means we are seeking a single vector w onto which we
can project the data. Below we derive the optimal w in the two-class case. We then generalize to
the multi-class case, and finally we give a probabilistic interpretation of this technique.
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Figure 9.4: Linear disciminant analysis applied to two class dataset in 2d, representing (standardized) height
and weight for male and female adults (a) PCA direction. (b) FLDA direction. (c) Projection onto PCA
direction shows poor class separation. (d) Projection onto FLDA direction shows good class separation.
Generated by fisher_lda_demo.ipynb.

9.2.6.1 Derivation of the optimal 1d projection

We now derive this optimal direction w, for the two-class case, following the presentation of [Bis06,
Sec 4.1.4]. Define the class-conditional means as

µ1 =
1

N1

∑

n:yn=1

xn, µ2 =
1

N2

∑

n:yn=2

xn (9.27)

Let mk = wTµk be the projection of each mean onto the line w. Also, let zn = wTxn be the
projection of the data onto the line. The variance of the projected points is proportional to

s2k =
∑

n:yn=k

(zn −mk)
2 (9.28)

The goal is to find w such that we maximize the distance between the means, m2 −m1, while also
ensuring the projected clusters are “tight”, which we can do by minimizing their variance. This
suggests the following objective:

J(w) =
(m2 −m1)

2

s21 + s22
(9.29)
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We can rewrite the right hand side of the above in terms of w as follows

J(w) =
wTSBw

wTSWw
(9.30)

where SB is the between-class scatter matrix given by

SB = (µ2 − µ1)(µ2 − µ1)
T (9.31)

and SW is the within-class scatter matrix, given by

SW =
∑

n:yn=1

(xn − µ1)(xn − µ1)
T +

∑

n:yn=2

(xn − µ2)(xn − µ2)
T (9.32)

To see this, note that

wTSBw = wT(µ2 − µ1)(µ2 − µ1)
Tw = (m2 −m1)(m2 −m1) (9.33)

and

wTSWw =
∑

n:yn=1

wT(xn − µ1)(xn − µ1)
Tw+

∑

n:yn=2

wT(xn − µ2)(xn − µ2)
Tw (9.34)

=
∑

n:yn=1

(zn −m1)
2 +

∑

n:yn=2

(zn −m2)
2 (9.35)

Equation (9.30) is a ratio of two scalars; we can take its derivative with respect to w and equate to
zero. One can show (Exercise 9.1) that J(w) is maximized when

SBw = λSWw (9.36)

where

λ =
wTSBw

wTSWw
(9.37)

Equation (9.36) is called a generalized eigenvalue problem. If SW is invertible, we can convert it
to a regular eigenvalue problem:

S−1W SBw = λw (9.38)

However, in the two class case, there is a simpler solution. In particular, since

SBw = (µ2 − µ1)(µ2 − µ1)
Tw = (µ2 − µ1)(m2 −m1) (9.39)

then, from Equation (9.38) we have

λ w = S−1W (µ2 − µ1)(m2 −m1) (9.40)

w ∝ S−1W (µ2 − µ1) (9.41)
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Figure 9.5: (a) PCA projection of vowel data to 2d. (b) FLDA projection of vowel data to 2d. We see
there is better class separation in the FLDA case. Adapted from Figure 4.11 of [HTF09]. Generated by
fisher_discrim_vowel.ipynb.

Since we only care about the directionality, and not the scale factor, we can just set

w = S−1W (µ2 − µ1) (9.42)

This is the optimal solution in the two-class case. If SW ∝ I, meaning the pooled covariance matrix
is isotropic, then w is proportional to the vector that joins the class means. This is an intuitively
reasonable direction to project onto, as shown in Figure 9.3.

9.2.6.2 Extension to higher dimensions and multiple classes

We can extend the above idea to multiple classes, and to higher dimensional subspaces, by finding a
projection matrix W which maps from D to K. Let zn = Wxn be the low dimensional projection
of the n’th data point. Let mc =

1
Nc

∑
n:yn=c zn be the corresponding mean for the c’th class and

m = 1
N

∑C
c=1Ncmc be the overall mean, both in the low dimensional space. We define the following

scatter matrices:

S̃W =

C∑

c=1

∑

n:yn=c

(zn −mc)(zn −mc)
T (9.43)

S̃B =

C∑

c=1

Nc(mc −m)(mc −m)T (9.44)

Finally, we define the objective function as maximizing the following:2

J(W) =
|S̃B |
|S̃W |

=
|WTSBW|
|WTSWW| (9.45)

2. An alternative criterion that is sometimes used [Fuk90] is J(W) = tr
{
S̃−1
W S̃B

}
= tr

{
(WSWWT)−1(WSBWT)

}
.
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where SW and SB are defined in the original high dimensional space in the obvious way (namely using
xn instead of zn, µc instead of mc, and µ instead of m). The solution can be shown [DHS01] to be
W = S

− 1
2

W U, where U are the K leading eigenvectors of S−
1
2

W SBS
− 1

2

W , assuming SW is non-singular.
(If it is singular, we can first perform PCA on all the data.)

Figure 9.5 gives an example of this method applied to some D = 10 dimensional speech data,
representing C = 11 different vowel sounds. We project to K = 2 dimensions in order to visualize
the data. We see that FLDA gives better class separation than PCA.

Note that FLDA is restricted to finding at most a K ≤ C − 1 dimensional linear subspace, no
matter how large D, because the rank of the between class scatter matrix SB is C − 1. (The -1 term
arises because of the µ term, which is a linear function of the µc.) This is a rather severe restriction
which limits the usefulness of FLDA.

9.3 Naive Bayes classifiers

In this section, we discuss a simple generative approach to classification in which we assume the
features are conditionally independent given the class label. This is called the naive Bayes
assumption. The model is called “naive” since we do not expect the features to be independent,
even conditional on the class label. However, even if the naive Bayes assumption is not true, it
often results in classifiers that work well [DP97; HY01a]. One reason for this is that the model is
quite simple (it only has O(CD) parameters, for C classes and D features), and hence it is relatively
immune to overfitting.

More precisely, the naive Bayes assumption corresponds to using a class conditional density of the
following form:

p(x|y = c,θ) =

D∏

d=1

p(xd|y = c,θdc) (9.46)

where θdc are the parameters for the class conditional density for class c and feature d. Hence the
posterior over class labels is given by

p(y = c|x,θ) = p(y = c|π)∏D
d=1 p(xd|y = c,θdc)∑

c′ p(y = c′|π)∏D
d=1 p(xd|y = c′,θdc′)

(9.47)

where πc is the prior probability of class c, and θ = (π, {θdc}) are all the parameters. This is known
as a naive Bayes classifier or NBC.

9.3.1 Example models

We still need to specify the form of the probability distributions in Equation (9.46). This depends on
what type of feature xd is. We give some examples below:

• In the case of binary features, xd ∈ {0, 1}, we can use the Bernoulli distribution: p(x|y = c,θ) =∏D
d=1 Ber(xd|θdc), where θdc is the probability that xd = 1 in class c. This is sometimes called the

multivariate Bernoulli naive Bayes model. For example, Figure 9.6 shows the estimated
parameters for each class when we fit this model to a binarized version of MNIST. This approach
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Figure 9.6: Visualization of the Bernoulli class conditional densities for a naive Bayes classifier fit to a
binarized version of the MNIST dataset. Generated by naive_bayes_mnist_jax.ipynb.

1 4 9 4 9

Figure 9.7: Visualization of the predictions made by the model in Figure 9.6 when applied to some
binarized MNIST test images. The title shows the most probable predicted class. Generated by
naive_bayes_mnist_jax.ipynb.

does surprisingly well, and has a test set accuracy of 84.3%. (See Figure 9.7 for some sample
predictions.)

• In the case of categorical features, xd ∈ {1, . . . ,K}, we can use the categorical distribution:
p(x|y = c,θ) =

∏D
d=1 Cat(xd|θdc), where θdck is the probability that xd = k given that y = c.

• In the case of real-valued features, xd ∈ R, we can use the univariate Gaussian distribution:
p(x|y = c,θ) =

∏D
d=1N (xd|µdc, σ

2
dc), where µdc is the mean of feature d when the class label is

c, and σ2
dc is its variance. (This is equivalent to Gaussian discriminant analysis using diagonal

covariance matrices.)

9.3.2 Model fitting

In this section, we discuss how to fit a naive Bayes classifier using maximum likelihood estimation.
We can write the likelihood as follows:

p(D|θ) =
N∏

n=1

[
Cat(yn|π)

D∏

d=1

p(xnd|yn,θd)
]

(9.48)

=

N∏

n=1

[
Cat(yn|π)

D∏

d=1

C∏

c=1

p(xnd|θdc)I(yn=c)

]
(9.49)

so the log-likelihood is given by

log p(D|θ) =
[

N∑

n=1

C∑

c=1

I (yn = c) log πc

]
+

C∑

c=1

D∑

d=1

[ ∑

n:yn=c

log p(xnd|θdc)
]

(9.50)

We see that this decomposes into a term for π, and CD terms for each θdc:

log p(D|θ) = log p(Dy|π) +
∑

c

∑

d

log p(Ddc|θdc) (9.51)
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where Dy = {yn : n = 1 : N} are all the labels, and Ddc = {xnd : yn = c} are all the values of feature
d for examples from class c. Hence we can estimate these parameters separately.

In Section 4.2.4, we show that the MLE for π is the vector of empirical counts, π̂c = Nc

N . The
MLEs for θdc depend on the choice of the class conditional density for feature d. We discuss some
common choices below.

• In the case of discrete features, we can use a categorical distribution. A straightforward extension
of the results in Section 4.2.4 gives the following expression for the MLE:

θ̂dck =
Ndck∑K

k′=1Ndck′
=
Ndck

Nc
(9.52)

where Ndck =
∑N

n=1 I (xnd = k, yn = c) is the number of times that feature d had value k in
examples of class c.

• In the case of binary features, the categorical distribution becomes the Bernoulli, and the MLE
becomes

θ̂dc =
Ndc

Nc
(9.53)

which is the empirical fraction of times that feature d is on in examples of class c.

• In the case of real-valued features, we can use a Gaussian distribution. A straightforward extension
of the results in Section 4.2.5 gives the following expression for the MLE:

µ̂dc =
1

Nc

∑

n:yn=c

xnd (9.54)

σ̂2
dc =

1

Nc

∑

n:yn=c

(xnd − µ̂dc)
2 (9.55)

Thus we see that fitting a naive Bayes classifier is extremely simple and efficient.

9.3.3 Bayesian naive Bayes

In this section, we extend our discussion of MLE estimation for naive Bayes classifiers from Section 9.3.2
to compute the posterior distribution over the parameters. For simplicity, let us assume we have
categorical features, so p(xd|θdc) = Cat(xd|θdc), where θdck = p(xd = k|y = c). In Section 4.6.3.2,
we show that the conjugate prior for the categorical likelihood is the Dirichlet distribution, p(θdc) =
Dir(θdc|βdc), where βdck can be interpereted as a set of “pseudo counts”, corresponding to counts
Ndck that come from prior data. Similarly we use a Dirichlet prior for the label frequencies,
p(π) = Dir(π|α). By using a conjugate prior, we can compute the posterior in closed form, as we
explain in Section 4.6.3. In particular, we have

p(θ|D) = Dir(π| ⌢α)
D∏

d=1

C∏

c=1

Dir(θdc|
⌢
βdc) (9.56)
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where ⌢αc=
⌣αc +Nc and

⌢
βdck=

⌣
βdck +Ndck.

Using the results from Section 4.6.3.4, we can derive the posterior predictive distribution as
follows. For the label prior (before seeing x, but after seeing D), we have p(y|D) = Cat(y|π), where
πc =

⌢αc /
∑

c′
⌢αc′ . For the feature likelihood of x (given y and D), we have p(xd = k|y = c,D) = θdck,

where

θdck =

⌢
βdck∑K

k′=1

⌢
βdck′

=

⌣
βdck +Ndck∑K

k′=1

⌣
βdck′ +Ndck′

(9.57)

is the posterior mean of the parameters. (Note that
∑K

k′=1Ndck′ = Ndc = Nc is the number of
examples for class c.)

If
⌣
βdck= 0, this reduces to the MLE in Equation (9.52). By contrast, if we set

⌣
βdck= 1, we add

1 to all the empirical counts before normalizing. This is called add-one smoothing or Laplace
smoothing. For example, in the binary case, this gives

θdc =

⌣
βdc1 +Ndc1

⌣
βdc0 +Ndc0+

⌣
βdc1 +Ndc1

=
1 +Ndc1

2 +Ndc
(9.58)

We can finally compute the posterior predictive distribution over the label as follows:

p(y = c|x,D) ∝ p(y = c|D)
∏

d

p(xd|y = c,D) = πc

∏

d

∏

k

θ
I(xd=k)

dck (9.59)

This gives us a fully Bayesian form of naive Bayes, in which we have integrated out all the parameters.
(In this case, the predictive distribution can be obtained merely by plugging in the posterior mean
parameters.)

9.3.4 The connection between naive Bayes and logistic regression

In this section, we show that the class posterior p(y|x,θ) for a NBC model has the same form as
multinomial logistic regression. For simplicity, we assume that the features are all discrete, and each
has K states, although the result holds for arbitrary feature distributions in the exponential family.

Let xdk = I (xd = k), so xd is a one-hot encoding of feature d. Then the class conditional density
can be written as follows:

p(x|y = c,θ) =

D∏

d=1

Cat(xd|y = c,θ) =

D∏

d=1

K∏

k=1

θxdk

dck (9.60)

Hence the posterior over classes is given by

p(y = c|x,θ) = πc
∏

d

∏
k θ

xdk

dck∑
c′ πc′

∏
d

∏
k θ

xdk

dc′k

=
exp[log πc +

∑
d

∑
k xdk log θdck]∑

c′ exp[log πc′ +
∑

d

∑
k xdk log θdc′k]

(9.61)

This can be written as a softmax

p(y = c|x,θ) = eβ
T
cx+γc

∑C
c′=1 e

βT
c′x+γc′

(9.62)
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Figure 9.8: The class-conditional densities p(x|y = c) (left) may be more complex than the class posteriors
p(y = c|x) (right). Adapted from Figure 1.27 of [Bis06]. Generated by generativeVsDiscrim.ipynb.

by suitably defining βc and γc. This has exactly the same form as multinomial logistic regression in
Section 2.5.3. The difference is that with naive Bayes we optimize the joint likelihood

∏
n p(yn,xn|θ),

whereas with logistic regression, we optimize the conditional likelihood
∏

n p(yn|xn,θ). In general,
these can give different results (see Exercise 10.3).

9.4 Generative vs discriminative classifiers

A model of the form p(x, y) = p(y)p(x|y) is called a generative classifier, since it can be used
to generate examples x from each class y. By contrast, a model of the form p(y|x) is called a
discriminative classifier, since it can only be used to discriminate between different classes. Below
we discuss various pros and cons of the generative and discriminative approaches to classification.
(See also [BT04; UB05; LBM06; BL07a; Rot+18].)

9.4.1 Advantages of discriminative classifiers

The main advantages of discriminative classifiers are as follows:

• Better predictive accuracy. Discriminative classifiers are often much more accurate than
generative classifiers [NJ02]. The reason is that the conditional distribution p(y|x) is often much
simpler (and therefore easier to learn) than the joint distribution p(y,x), as illustrated in Figure 9.8.
In particular, discriminative models do not need to “waste effort” modeling the distribution of the
input features.

• Can handle feature preprocessing. A big advantage of discriminative methods is that they
allow us to preprocess the input in arbitrary ways. For example, we can perform a polynomial
expansion of the input features, and we can replace a string of words with embedding vectors (see
Section 20.5). It is often hard to define a generative model on such pre-processed data, since the
new features can be correlated in complex ways which are hard to model.
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• Well-calibrated probabilities. Some generative classifiers, such as naive Bayes (described in
Section 9.3), make strong independence assumptions which are often not valid. This can result
in very extreme posterior class probabilities (very near 0 or 1). Discriminative models, such as
logistic regression, are often better calibrated in terms of their probability estimates, although
they also sometimes need adjustment (see e.g., [NMC05]).

9.4.2 Advantages of generative classifiers

The main advantages of generative classifiers are as follows:

• Easy to fit. Generative classifiers are often very easy to fit. For example, in Section 9.3.2, we
show how to fit a naive Bayes classifier by simple counting and averaging. By contrast, logistic
regression requires solving a convex optimization problem (see Section 10.2.3 for the details), and
neural nets require solving a non-convex optimization problem, both of which are much slower.

• Can easily handle missing input features. Sometimes some of the inputs (components of x)
are not observed. In a generative classifier, there is a simple method for dealing with this, as we
show in Section 1.5.5. However, in a discriminative classifier, there is no principled solution to
this problem, since the model assumes that x is always available to be conditioned on.

• Can fit classes separately. In a generative classifier, we estimate the parameters of each class
conditional density independently (as we show in Section 9.3.2), so we do not have to retrain
the model when we add more classes. In contrast, in discriminative models, all the parameters
interact, so the whole model must be retrained if we add a new class.

• Can handle unlabeled training data. It is easy to use generative models for semi-supervised
learning, in which we combine labeled data Dxy = {(xn, yn)} and unlabeled data, Dx = {xn}.
However, this is harder to do with discriminative models, since there is no uniquely optimal way
to exploit Dx.

• May be more robust to spurious features. A discriminative model p(y|x) may pick up on
features of the input x that can discriminate different values of y in the training set, but which
are not robust and do not generalize beyond the training set. These are called spurious features
(see e.g., [Arj21; Zho+21]). By contrast, a generative model p(x|y) may be better able to capture
the causal mechanisms of the underlying data generating process; such causal models can be more
robust to distribution shift (see e.g., [Sch19; LBS19; LN81]).

9.4.3 Handling missing features

Sometimes we are missing parts of the input x during training and/or testing. In a generative
classifier, we can handle this situation by marginalizing out the missing values. (We assume that
the missingness of a feature is not informative about its potential value.) By contrast, when using
a discriminative model, there is no unique best way to handle missing inputs, as we discuss in
Section 1.5.5.
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For example, suppose we are missing the value of x1. We just have to compute

p(y = c|x2:D,θ) ∝ p(y = c|π)p(x2:D|y = c,θ) (9.63)

= p(y = c|π)
∑

x1

p(x1,x2:D|y = c,θ) (9.64)

In Gaussian discriminant analysis, we can marginalize out x1 using the equations from Section 3.2.3.
If we make the naive Bayes assumption, things are even easier, since we can just ignore the

likelihood term for x1. This follows because

∑

x1

p(x1, x2:D|y = c,θ) =

[∑

x1

p(x1|θ1c)
]

D∏

d=2

p(xd|θdc) =
D∏

d=2

p(xd|θdc) (9.65)

where we exploited the fact that p(xd|y = c,θ) = p(xd|θdc) and
∑

x1
p(x1|θ1c) = 1.

9.5 Exercises

Exercise 9.1 [Derivation of Fisher’s linear discriminant]

Show that the maximum of J(w) = wTSBw

wTSWw
is given by SBw = λSWw

where λ = wTSBw

wTSWw
. Hint: recall that the derivative of a ratio of two scalars is given by d

dx
f(x)
g(x)

= f ′g−fg′

g2
,

where f ′ = d
dx

f(x) and g′ = d
dx

g(x). Also, recall that d
dx

xTAx = (A+AT )x.
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